4 research outputs found

    Hilar Mossy Cells Provide the First Glutamatergic Synapses to Adult-Born Dentate Granule Cells

    Get PDF
    Adult-generated granule cells (GCs) in the dentate gyrus must establish synapses with preexisting neurons to participate in network activity. To determine the source of early glutamatergic synapses on newborn GCs in adult mice, we examined synaptic currents at the developmental stage when NMDA receptor-mediated silent synapses are first established. We show that hilar mossy cells provide initial glutamatergic synapses as well as disynaptic GABAergic input to adult-generated dentate GCs

    Dual Dopaminergic Regulation of Corticostriatal Plasticity by Cholinergic Interneurons and Indirect Pathway Medium Spiny Neurons

    No full text
    Summary: Endocannabinoid (eCB)-mediated long-term depression (LTD) requires dopamine (DA) D2 receptors (D2Rs) for eCB mobilization. The cellular locus of the D2Rs involved in LTD induction remains highly debated. We directly examined the role in LTD induction of D2Rs expressed by striatal cholinergic interneurons (Chls) and indirect pathway medium spiny neurons (iMSNs) using neuron-specific targeted deletion of D2Rs. Deletion of Chl-D2Rs (Chl-Drd2KO) impaired LTD induction in both subtypes of MSNs. LTD induction was restored in the Chl-Drd2KO mice by an M1-selective muscarinic acetylcholine receptor antagonist. In contrast, after the deletion of iMSN-D2Rs (iMSN-Drd2KO), LTD induction was intact in MSNs. Separate interrogation of direct pathway and iMSNs revealed a deficit in LTD induction only at synapses onto iMSNs that lack D2Rs. LTD induction in iMSNs was restored by D2R agonist application. Our findings suggest that Chl D2Rs strongly modulate LTD induction in MSNs, with iMSN-D2Rs having a weaker, iMSN-specific, modulatory effect. : The cellular location of dopamine D2 receptors (D2Rs) involved in corticostriatal long-term synaptic depression (LTD) is controversial. Augustin et al. show that D2Rs on cholinergic interneurons strongly modulate LTD induction at synapses onto all medium spiny neurons (MSNs), while D2Rs on iMSNs weakly modulate induction at synapses onto iMSNs. Keywords: D2 receptors, cholinergic interneurons, iMSNs, dMSNs, long-term depressio

    Dynamic functions of GABA signaling during granule cell maturation

    No full text
    The dentate gyrus is one of the few areas of the brain where new neurons are generated throughout life. Neural activity influences multiple stages of neurogenesis, thereby allowing experience to regulate the production of new neurons. It is now well established that GABAA receptor-mediated signaling plays a pivotal role in mediating activity-dependent regulation of adult neurogenesis. GABA first acts as a trophic signal that depolarizes progenitors and early post mitotic granule cells, enabling network activity to control molecular cascades essential for proliferation, survival and growth. Following the development of glutamatergic synaptic inputs, GABA signaling switches from excitatory to inhibitory. Thereafter robust synaptic inhibition enforces low spiking probability of granule cells in response to cortical excitatory inputs and maintains the sparse activity patterns characteristic of this brain region. Here we review these dynamic functions of GABA across granule cell maturation, focusing on the potential role of specific interneuron circuits at progressive developmental stages. We further highlight questions that remain unanswered about GABA signaling in granule cell development and excitability
    corecore